Machine Learning With Social Media

By Sidharth Srivastava

What is Machine Learning?

The Basics

A breakthrough in machine learning would be worth ten Microsofts. -Bill Gates

Machine Learning

The use of statistical processes by machines to analyze data and make decisions

Machine Learning

A few key steps:
 Data gathering
 Model Training
 Evaluation
 Prediction

Types of Machine Learning

Unsupervised

- Data without given labels
- Algorithm discovers layers and groups in data
- Can be used to find

Supervised

 Data with labels
 Model is trained to find correlation
 Prediction is based on correlation

Clustering

Clustering is an unsupervised task where data is grouped into clusters to find groups in data.

How did I get my social media data? A look at data mining.

The Program

Python

- The language I programmed my algorithm in.
- All the APIs ran on my Python instance.
- I chose Python because it has a large library of machine learning and data mining APIs.

Tweepy API

- The commands that Tweepy made to get data from Twitter.
- I downloaded this API, and my program could use the commands it gave.
- I used it to "stream" or get 500 tweets live.
- I then got the user from each tweet and got their follower count and tweet count.

The TensorFlow Environment

Machine Learning requires a lot of preprocessing and algorithms.
 TensorFlow is an API that does it for you.
 I used the k-means method, which does clustering.

Matplotlib

- Matplotlib is another API, designed to plot data.
- It can plot scatter plots, points, and more.
 It served as a tool to display my data.

Putting It All Together

 First, I gathered 500 tweets that referenced "north korea" and put them into a file.
 Then, I got the username from each tweet, and got that user's follower and tweet count.

Then, I ran my clustering algorithm.
Finally, I plotted the data in each cluster.

The Design Process

Gathering Twitter data from Tweepy

Running the TensorFlow K-means algorithm Plotting my data in matplotlib and seeing the results

Program

print(a[i][0], a[i][1], i) if(i==499): break i+=1 def input_fn(): return tf.train.limit epochs(tf.convert to tensor(a, dtype=tf.float32), num_epochs=1) num clusters = 3 kmeans = tf.contrib.factorization.KMeansClustering(num_clusters=num_clusters, use mini batch=False) num iterations = 1000 previous centers = None for _ in range(num_iterations): kmeans.train(input_fn) cluster_centers = kmeans.cluster_centers() previous centers = cluster centers print ('cluster centers:', cluster centers) cluster_indices = list(kmeans.predict_cluster_index(input_fn)) charar = np.array(['ro', 'bo', 'go']) for p, point in enumerate(a): cluster_index = cluster_indices[p] center = cluster_centers[cluster_index] print(a[p][0], a[p][1], cluster_index)
plt.plot(a[p][0], a[p][1], charar[cluster_index]) plt.show()

```
iprempty([io] b]) stipt inty
api = tweepy.API(auth)
i=0
class listener(StreamListener):
        def on_data(self, data):
               global i
               all_data = json.loads(data)
               username = all data["user"]["screen name"]
               user_data = api.get_user(username)
               a[i][0]=user_data.followers_count
               a[i][1]=user_data.statuses_count
                print(username, a[i][0], a[i][1])
                i += 1
               if(i>9):
                        return False
               else:
                       return True
        def on error(self, status):
               print (status)
twitterStream = Stream(auth. listener())
twitterStream.filter(track=['north korea'])
def input fn():
       return tf.train.limit epochs(tf.convert to tensor(a, dtype=tf.float32),
num_epochs=1)
```


What Next?

\bigcirc

Geolocation

Geolocation can be used with any other variables to generate a map of users based on their location and another parameter.

Tweet Rate

Using tweet rate, I can cluster users and determine which communities are bots.

Cloud

I could migrate my algorithm to a Hadoop cluster or other cloud computer, giving me more processing power to process more tweets.

Neural Network

This clustering algorithm could be used as a preprocessor for a supervised algorithm, such as a neural net.

Text

I could use the spherical k-means algorithm to cluster tweets based on texts, and then do sentiment analysis or another algorithm.

Different Clustering

I could use hierarchical clustering to build clusters of users and their status based on followers.

Works Cited

- http://www.anc.ed.ac.uk/machine-learning/
- https://lagunita.stanford.edu/c4x/HumanitiesScience/ StatLearning/asset/unsupervised.pdf
- https://towardsdatascience.com/the-7-steps-of-machi ne-learning-2877d7e5548e
- http://www.stat.columbia.edu/~madigan/W2025/note s/clustering.pdf

Works Cited

- https://matplotlib.org/api/ as gen/matplo tlib.pyplot.scatter.html
- <u>http://docs.tweepy.org/en/latest/api.html#</u>
 <u>API.get status</u>
 - https://twitter.com/sid58352832
 - https://docs.scipy.org/doc/numpy-1.14.0/r

eference/generated/numpy.random.unifor

Works Cited

- https://marcobonzanini.com/2015/03/09/ mining-twitter-data-with-python-part-2/ https://learningtensorflow.com/lesson6/ https://apps.twitter.com/app/15040379/ke <u>VS</u> <u>https://github.com/tensorflow/tensorflow/</u>
 - blob/r1.8/tensorflow/contrib/factorization/ python/ops/kmeans.py

https://github.com/tensorflow/tensorflow/ blob/r1.8/tensorflow/contrib/factorization/ python/ops/kmeans.py https://stackoverflow.com/questions/4941 8325/use-tf-contrib-factorization-kmeanscl ustering